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Abstract. Nickel diffusion in Ni3Sb (D03 structure, four sublattices) is so fast that an unusual
jump mechanism might be suspected. This suspicion is nourished by the recent discovery of
high concentrations of ordered vacancies, i.e. vacancies on two of the nickel sublattices, theα-
sublattices. Quasielastic neutron scattering (QNS) can be used to determine the elementary
diffusion jump. Using this method we have found that the elementary diffusion jump is
unambiguously a jump into a nearest-neighbour site, i.e. between sites onα- andγ -sublattices.
In spite of the very high vacancy concentration on theα-sites (which certainly supports the fast
jumping) it is—interestingly enough—not a jump directly betweenα-sites.

1. Introduction

An interesting feature of some intermetallic alloys (or just ‘intermetallics’) is the
extraordinarily high diffusivity of one of the constituents. It seems to be a general property
of D03 intermetallics that the diffusion of the majority component is much faster than that of
the minority component, and also considerably higher than diffusion in other intermetallics
(Weveret al 1989). The elementary diffusion process in several intermetallics has therefore
been the subject of recent studies. Quasielastic Mössbauer spectroscopy (QMS) has served
to determine the elementary diffusion jump of Fe atoms in the system Fe–Si at compositions
around Fe3Si (Sepiol and Vogl 1993, 1995) and in the system Fe–Al in the range from 50
at.% Fe to 75 at.% Fe (Vogl and Sepiol 1994, Feldwischet al 1995). With quasielastic
neutron scattering (QNS; see, e.g., Bée 1988) the elementary jump of Ni atoms in hcp NiSb
has been determined (Voglet al 1993).

Here we report on a QNS study of Ni diffusion in the high-temperatureβ-phase of the
intermetallic Ni72.5Sb27.5. According to the phase diagram (Heinrichet al 1978) the alloy
melts congruently at that composition, and not at the stoichiometric composition Ni75Sb25.
Therefore even though growth with the floating-zone method produces crystals close to
Ni72.5Sb27.5 (the crystals that we have used), in the following for the sake of brevity we
shall call the alloy Ni3Sb. The crystal structure is the cubic D03 structure (figure 1), space
groupFm3̄m, that phase being stable above 530◦C. On a temperature scale reduced to the
melting temperature (figure 2) Ni atoms exhibit the fastest self-diffusion ever observed in
an intermetallic alloy—to the best of our knowledge even the fastest self-diffusion of metal
atoms ever observed in a purely metallic system. Heumann and Stüer (1966) have shown
that the Ni diffusivity increases with the departure from the stoichiometric composition,
which gave rise to the assumption of fast diffusion induced by off-stoichiometric vacancies
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Figure 1. The D03 structure can be interpreted as a bcc lattice with a superstructure in the form
of an alternate occupation of the centred sites by Ni and Sb atoms. The lattice can be seen as
being composed of four individual fcc sublattices. In Ni3Sb three of them (α1, α2, both hatched
circles, andγ , full circles) are occupied by Ni atoms, and one (β, open circles) is occupied by
Sb atoms. The different arrows symbolize the different jump models discussed in section 5.

Figure 2. A comparison of self-diffusion rates
of selected metals and intermetallics on a reduced
temperature scale.

on Ni sites. Measurements of the electrotransport in Ni3Sb performed by the same authors
suggest that the Ni diffusion exceeds that of Sb by several orders of magnitude (Heumann
and Sẗuer 1967).

Indeed, vacancies were found in powder diffraction measurements on various alloys
in the composition range from Ni71Sb29 to Ni75Sb25 (Randl 1994, Randlet al 1996) by
measuring the elastic coherent neutron scattering, in particular the intensities of the (111)
and (200) reflections. The vacancies are found not to be distributed in equal fractions on
all Ni sublattices, but rather to be concentrated on theα-sublattices. On theβ-sublattice
no antistructure Ni atoms could be detected, that lattice obviously belonging exclusively
to the Sb atoms. Moreover one would not expect the Ni atoms to use vacancies on
regular Sb sites much more often than the Sb atoms themselves with their lower diffusivity.
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Therefore we exclude the possibility of Ni jumps viaβ-sites (normally occupied by Sb
atoms). Considering the high vacancy concentrations on theα-sites there appear to be
various possible jump models for Ni atoms:

(i) jumps exclusively betweenα-sites, possibly even over large distances (which would
make the extremely high diffusivity plausible); and

(ii) jumps betweenα- andγ -sites, i.e. nearest-neighbour (NN) sites.

2. Elementary jump processes studied with quasielastic neutron scattering

QNS and QMS are two competing tools for the examination of lattice diffusion mechanisms
(jump length and jump vector) on an atomic scale. A comparison of these methods has
been given by Petry and Vogl (1987) and by Vogl (1996). While coherent neutron scattering
yields information about collective phenomena, incoherent neutron scattering is sensitive to
the movement of asingle atom. In our case, QNS is ideal as there exist no appropriate
isotopes for M̈ossbauer spectroscopy and the relevant incoherent neutron scattering length
of Ni (5.3 b) is quite sufficient and exceeds by far that of Sb (0.3 b) (Sears 1984). Therefore
Sb is practically invisible as regards incoherent neutron scattering.

Besides quasielastic incoherent scattering there is quasielastic coherent diffuse scattering
(Ross and Wilson 1978). We have earlier discussed the problems associated with the overlap
of the two in the case of a NiSb alloy (Voglet al 1993). In the presence of vacancies on
the Ni sublattices diffuse coherent scattering of Laue type is proportional to the coherent
scattering cross section of the Ni atoms (13.3 b, Sears 1984) and to the product of the
concentrations of Ni atoms and vacancies. The corresponding cross section for, say, 10%
vacancies on the Ni sublattices is then about 20% of the incoherent cross section of the Ni
atoms. In the case of a correlation of the diffusing atoms or relaxation of the surrounding
atoms whilst an atom is undergoing a jump between lattice sites, according to Sinha and
Ross (1988) short-range-order diffuse scattering would come into play. Measurements
of diffuse short-range-order scattering which are under way for intermetallic alloys could
yield information on the amount of diffuse scattering and could enable an estimate of its
contribution to quasielastic scattering to be obtained, but in default of such information for
the time being we have to neglect such a possible contribution in the evaluation of the
present data.

The individual movements of the atoms—jumps in the case of a lattice—lead to a
broadening of the elastic incoherent intensity in energy space, called quasielastic line
broadening. Since this broadening is weak, exceptionally high energy resolution is
necessary. Apart from M̈ossbauer spectroscopy only spin-echo and neutron backscattering
spectrometers provide sufficient resolution to study diffusivities as low as 10−11 m2 s−1.
The theory relating the elementary jump process and linewidth (Singwi and Sjölander 1960)
is rather simple in the case of NN jumps in a Bravais lattice (Chudley and Elliott 1961).
It yields a dependence on momentum (Q) and energy (¯hω) of the incoherent scattering
function in the form of a Lorentzian line which, except for trivial normalization, is

S(Q, ω) = 0(Q)/2

[0(Q)/2]2 + ω2
(1)

with a linewidth (FWHM) corresponding to the diffusional line broadening

0 = 2h̄

τ

[
1 − (1/N)

∑
k

exp(iQ · lk)

]
(2)
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whereN is the number of NN atoms,lk denotes thekth jump vector, andτ is the residence
time between two jumps (the jump time itself is considered to be negligibly short).

In the case of non-Bravais lattices (as, e.g., in the D03 lattice) the theory becomes more
complicated (Roweet al 1971, Kehret al 1978, Andersonet al 1984, Richteret al 1991).
A detailed derivation and a comparison of QNS and QMS has recently been given by Randl
et al (1994). The generalized form of equation (1) including jumps via various sublattices
is

S(Q, ω) =
∑
p

wp(Q)
0p(Q)/2

[0p(Q)/2]2 + ω2
(3)

wherep is the number of different sublattices involved in the jump process. In the case
of nearest-neighbour jumps on a D03 lattice, p equals four, and consequently the number
of Lorentzians that sum up to the scattering law is four. The linewidths (FWHM) of the
Lorentzians (again describing the diffusional line broadening) are the eigenvalues of a matrix
A which we call the jump matrix. It has components

Aij = 1

njiτji

∑
k

exp(iQ · lkij ) − δij

∑
j

1

τij

. (4)

Here we have assumed that each site on theith sublattice is surrounded bynij sites on
the j th sublattice, thekth of which is at a vector distancelkij . τij is the residence time at a
site of symmetryi before the jump occurs to any NN site of symmetryj . The weights of
the Lorentzian components are related to the eigenvectors of the hermitized matrix.δij is
one for i = j and zero otherwise.

3. Preparation and orientation of the samples

The measurements were performed on single crystals of Ni3Sb in the form of rods of
36 mm length and about 8 mm diameter. The crystals had been grown by the floating-
zone technique. While the crystal of the first measuring series was grown directly in the
measuring furnace and received no further containment, the crystal of the second series was
fixed in a cylinder made out of 60µm thick Nb sheet and then placed in the furnace. The
furnace was mounted on the backscattering spectrometer IN10 of the ILL (Ibel 1994).

The crystals were oriented at the three-axis spectrometer IN3 of the ILL. Since the D03-
structuredβ-phase of Ni3Sb is stable above 530◦C only, the orientation had to be performed
at high temperature. Previous experiments on Ni3Sb single crystals concerning the phase
transition between the low- and high-temperature phases had shown that the orientation
does not change when the crystal is cooled below the phase transition and reheated again,
though after repeated cycling the crystal quality decreases. In order to prevent any risks
regarding crystal quality and orientation we did not cool the crystals between orientation
and QNS measurements but rather transferred the hot furnace containing the crystal from
IN3 to IN10.

4. Experiment and data treatment

Measurements were performed in two series, one just before a four-year stop of the ILL
reactor, the other soon after its restart.

In the first series, the QNS was measured in three different crystal orientations, namely
〈60, 5, 135〉, 〈90, 5, 135〉, and 〈120, 5, 135〉, with Euler angles〈8, 2, 9〉 in degrees as
defined by Goldstein (1980). The nominal sample temperatures were 800◦C and 700◦C,
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the latter only for〈60, 5, 135〉. The individual orientations were obtained by turning the
furnace in the horizontal plane. Each of the four measurements took about one day. In
addition a measurement with a vanadium sample made in order to determine the resolution of
the instrument and an ‘empty-can measurement’ to account for the scattering of the empty
furnace were performed. We used the backscattering spectrometer IN10 in its original
version IN10A. The wavelength of incoming neutrons was 6.27Å, Q-values were between
0.27 and 1.94Å−1, the energy resolution was 1µeV, and the energy range was±12
µeV. As will be discussed, the expected Lorentzians with large diffusional broadening were
inaccessible in this experiment. We have given a short preliminary report on the results
(Sepiolet al 1994).

In the second measuring series three crystal orientations (〈110, 8, 258.5〉, 〈140, 8, 258.5〉,
and 〈170, 8, 258.5〉) were scanned at nominally 690◦C, the first two also at 780◦C. To
improve counting statistics compared to the former measurement series we spent 45 hours
on each measurement and 21 hours on each of two resolution runs and the empty-can
measurement. The positioning of the eight detectors allowed us to take spectra atQ-
values between 0.41̊A−1 and 1.93Å−1. To avoid the risk of contamination by (111)
Bragg reflections (coherent scattering) from possibly misoriented grains at the surface of
the crystal, we covered the analyser plates with a cadmium sheet in the angular range
where this reflection could appear, i.e. between 130 and 138◦. Higher Bragg reflections are
outside the angular range of IN10 and cannot disturb the measurements. We performed two
resolution measurements, one with vanadium and one with the sample itself, both at room
temperature where no diffusion-induced line broadening occurs.

This measurement series was performed on the new version of the IN10 backscattering
spectrometer named IN10B. The principle was as follows: in order to vary the energy
of the incoming neutrons (wavelength again 6.27Å) a KCl monochromator in the (200)
position was cooled down to about−180 ◦C and slowly reheated to about 130◦C during
each measurement (Cooket al 1992). The change in lattice constant obtained in that way
provided an energy difference from−13 µeV to 40µeV between incoming neutrons and
those which fulfil the backscattering condition of the Si(111) analyser plates. In principle
much larger energy transfers would be possible at IN10B, but for our purposes 40µeV was
sufficient. This high energy range proved to be necessary to fully scan the broader part of
the QNS spectra at temperatures well in the existence range of theβ-phase. Since there
is practically no quasielastic intensity above 40µeV, we were able to perform a reliable
background subtraction and determine the width of the broader line as well. The drawback
of the version IN10B was its weaker energy resolution of 3µeV compared to 1µeV at
IN10A.

Figure 3 compares two typical spectra obtained at the IN10A and the IN10B.
The raw data were treated with the routine SQW available at the ILL which subtracts

background and carries out absorption corrections. Fits with one as well as with two
Lorentzians were carried out using the ILL routine WLL.

5. Models for the elementary jump process

5.1. Jumps exclusively betweenα-sites

Figure 4 shows the linewidths (FWHM) due to diffusional broadening (i.e. the full
experimental widths deconvoluted by the instrumental resolution) for the three crystal
orientations and two temperatures of the second measuring series, together with various
model curves. The experimental data have been gained from fits of the spectra with just
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Figure 3. The quasielastic scattering intensityS(Q, ω) in arbitrary units as a function of energy.
Top: IN10A, 800◦C (Sepiolet al 1994); bottom: IN10B, 780◦C; both at aboutQ = 1.8 Å−1.
Notice that at 15µeV (the limit of IN10A) there is still non-negligible quasielastic intensity
belonging to the broader Lorentzian—therefore a correct consideration of the background was
impossible, and the background was arbitrarily set to zero; whereas the curve has reached the
background at 40µeV (the maximum energy transfer in the experiment on IN10B).

one Lorentzian line, i.e. with the Chudley–Elliott model for jumps on a Bravais lattice.
As mentioned above, the high vacancy concentration on theα-sublattices suggests

models which are based on jumps betweenα-sites exclusively. Several jump mechanisms
of this kind will be discussed.

(a) Jumps between far distantα-sites. One could naively assume that the unusually
high Ni diffusivity in Ni3Sb is due to long jumps of the Ni atoms directly into rather far
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Figure 4. (a), (b) and (c): crystal orientations〈8, 2, 9〉 = 〈110, 8, 258.5〉, 〈140, 8, 258.5〉,
and 〈170, 8, 258.5〉. A comparison is shown between measured diffusional line broadenings,
FWHM (fits with one broadened line only), atT = 690 ◦C (dots) and 780◦C (triangles), and
the linewidths as calculated with the assumptions of various jump models, namely: (1) jumps
exclusively betweenα-sites (a) at large distances (quite arbitrarily a distance of three times the
lattice parametera was chosen)—dotted lines; (b) at the distancea/

√
2, i.e. across the face

diagonal of the cube formed by theα-sites—dash-dotted lines; and (c) at the distancea/2,
i.e. along the edges of theα-site cube—dashed lines; and (2) jumps betweenα- andγ -sites at
the distance(a

√
3)/4 (nearest neighbours), i.e. across half of the body diagonal of theα-site

cube. The width is a weighted average of three lines according to equation (9)—thick lines.
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distant neighbour sites. Let us see how the experiments agree with such a hypothesis. In
figure 4 the dotted lines represent Chudley–Elliott model predictions according to equation
(2) for jumps over a distance of three times the lattice parametera = 5.93 Å. It is evident
that there is no way to reconcile model and experiment: the first maximum in the theory
appears at a smallQ-value where the experimental data still increase with increasingQ.
The naive hypothesis of direct jumps into distant neighbours can therefore be excluded.

(b) Jumps via the face diagonal of theα-cube. As this model presumes only jumps
between sites either of theα1- or theα2-sublattices, but no jumps between these two lattices,
we can regard them as NN jumps between equivalent sites on an fcc lattice and again apply
the Chudley–Elliott theory, which yields theQ-dependence of the linewidth after inserting
the jump vectors into equation (2). It is evident from figure 4 that theQ-dependences of
the calculated linewidths (dash-dotted lines) again have no similarity to the diffusional line
broadenings found in the experiment, so jumps of this kind can also be excluded.

(c) Jumps betweenα-sites along the edge of the cubic unit cell. As these jumps
correspond to NN jumps between equivalent sites on the simple cubic lattice of theα-
sites, again the Chudley–Elliott theory for Bravais lattices can be applied. From equation
(2) one obtains for the linewidths the curves as shown in figure 4 as dashed lines. As there
is again no agreement between model predictions and experimental data, this process again
can be excluded.

5.2. Jumps betweenα-andγ -sites, i.e. to nearest-neighbour sites

To calculate linewidths in the case of NN jumps we have to employ the theory for non-
Bravais lattices, since the sites are inequivalent. As described in section 2, this leads to more
than one Lorentzian and they are all centred around zero energy transfer but with different
widths. For the D03 structure in the most general case we expect four Lorentzians because
of the four inequivalent sites in the unit cell. Their widths correspond to the eigenvalues of
a 4×4 jump matrix (equation (4)). The four eigenvalues have to be calculated numerically.

It would be a hopeless endeavour to attempt a fit of four Lorentzian lines with different
widths to data with an experimental resolution of the order of these widths. Fortunately
we know from the powder diffraction data (Randl 1994, Randlet al 1996) that Ni atoms
avoid β-sites, the latter being occupied by the Sb atoms only. Thus we are left with three
Ni sites in the D03 unit cell and therefore three Lorentzian lines which correspond to the
eigenvalues of a 3× 3 jump matrix.

According to equation (4), matrixA has the diagonal terms−2/τγα, −1/ταγ , −1/ταγ

whereτγα and ταγ are the residence times on sites of the two types of Ni sublattice, the
γ -sublattice and theα-sublattice, respectively, before the jump to a site on the other Ni
sublattice occurs. The off-diagonal terms are functions of the structure of the ‘jump lattice’,
i.e. the lattice which is visited by the Ni atoms on jumping, and contain a ‘structure factor’

E = cos(Qxa) cos(Qya) cos(Qza) + i sin(Qxa) sin(Qya) sin(Qza). (5)

The matrix reads

A =
( −2/τγα E/ταγ E∗/ταγ

E∗/τγα −1/ταγ 0
E/τγα 0 −1/ταγ

)
. (6)

While the eigenvalues of the 4× 4 matrix A have to be calculated numerically, there is
an analytical solution for the 3× 3 matrix. The negative eigenvalues are the half-widths
(HWHM = (1/2)FWHM). One of the eigenvalues is independent of the structure factorE
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and therefore of crystal orientation relative to the neutron beam:

M1 = −1/ταγ . (7)

The two other eigenvalues are

M2,3 = −(1/4τγα)[2f + 4 ±
√

(2f − 4)2 + 2f EE∗] (8)

with f = τγα/ταγ .
The weights are related to the eigenvectors (see Randlet al 1994); their numerical

values may be found in Randl (1994).
As reported by Sepiolet al (1994), the experiment on IN10A was in agreement with the

predictions of this model. However, the insufficient energy range made the determination of
the background and, in consequence, that of the width of the broad component impossible.
Therefore, competing models could not be excluded.

Figure 5. (a) and (b): crystal orientations〈8, 2, 9〉 = 〈110, 8, 258.5〉 and 〈170, 8, 258.5〉;
T = 690 ◦C. Top panels: dots and triangles: diffusional line broadenings (FWHM) from a fit of
the measured spectra with two Lorentzians; curves: theoretical linewidths (FWHM) according
to the three-Lorentzian model for jumps betweenα- and γ -sites. The fit values for the broad
line were reliable only when the weight of the broad line was above about 50% or when the
linewidths differed sufficiently. Therefore in (a) no values for the widths of the broad line are
given below 1.8Å−1 and in (b) no values for the widths of the broad line are given below 1.4
Å−1. The component underlying the dotted curve has significant weight only when its width
coincides with that of the narrow line; this is why a three-Lorentzian fit of the data is not
necessary. Bottom panels: relative weights of Lorentzians according to the model.

The situation was improved in the second measuring series. Now the energy range
was wide enough to allow full separation of the broad line from the background. Figure
5(a) shows as an example linewidths and weights for the crystal orientation〈8, 2, 9〉 =
〈110, 8, 258.5〉, and figure 5(b) is for the orientation〈8, 2, 9〉 = 〈170, 8, 258.5〉.
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It is evident thatde facto only two instead of three lines have to be considered
when comparing with measurements, since the line whose width is independent ofQ has
reasonable weight only when its width approaches that of the narrower line. Therefore the
weights of the two lines can always be added, and the experimental values be compared
with two lines, a narrow and a broad one.

The data points in figures 5 (top panels) show the linewidths for fits of the spectra with
two lines. Two-line fits were not straightforward; we had to fix the relative weights of the
two lines while running the fit. To compare experimental data with theory we imposed the
weights predicted for a certain model and compared the fitted diffusional line broadenings
with the linewidths expected for this model.

The agreement with the model is satisfactory. A completely free fit (with both widths and
weights free) is beyond the resolution of the measurement, but might perhaps be promising
if the instrumental resolution could be improved to better than 1µeV.

We have also determined weighted averages of the three lines

0 = w101 + w202 + w303 (9)

and have plotted them as thick lines in figure 4. Their analytical shapes agree excellently
with the values derived from one-line fits to the experimental data.

From the fitted absolute values of the linewidths the atomic jump rate is derived; it is
different for the two different temperatures which in the figures are symbolized by dots and
triangles. The dependence of the diffusional line broadening (full width at half-maximum,
FWHM) on the wave numberQ at small Q (hydrodynamic or continuum limes) yields
diffusivities according to

lim 0(Q → 0) = 2h̄DQ2. (10)

As the smallest value forQ measured in our experiment was 0.41Å−1, we used the line
broadenings at smallQ from the theoretical curves that we fitted to our data. This procedure
is justified by the fact that theQ-dependence of the linewidths for small momentum
transfer is independent of the assumed model and orientation. We obtained the following
diffusivities:

D(690 ◦C) = 3.0(4) × 10−11 m2 s−1

D(780 ◦C) = 5.4(6) × 10−11 m2 s−1.

From Heumann and Stüer (1966) we derive values ofD between 2× 10−11 m2 s−1

and 3× 10−11 m2 s−1 at 690◦C and between 4× 10−11 m2 s−1 and 5× 10−11 m2 s−1 at
780 ◦C for Ni concentrations in the range between 72.9 and 71.7 at.%. Determination of
diffusivities is the domain of tracer measurements, and the diffusivities determined by that
method are considerably more precise than those determined using QNS, the domain of the
latter method being the determination of the elementary diffusion jump. The agreement
between diffusivities derived from tracer and from QNS data is, however, satisfactory.

Finally we compare the self-diffusion of Fe atoms in Fe3Si, another intermetallic with
D03 structure which we have studied recently with quasielastic Mössbauer spectroscopy
(QMS), finding that also there the elementary diffusion jump of the Fe atoms is a jump
betweenα- and γ -sublattices (Sepiol and Vogl 1993, 1995). Also in this system, the
diffusivity of iron on a reduced temperature scale (figure 2) is much higher than that in
most elementary metals even though it is not as high as for Ni in Ni3Sb, and again a high
vacancy concentration is supposed to be the reason.
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6. Conclusion

The NN-jump model offers excellent agreement with the experimental data, while models
based on jumps other than between nearest neighbours can be excluded. Making use of
our knowledge about occupancies on the different sublattices we explain the Ni diffusion
as follows: jumps between regular Ni sites, profiting from the high vacancy concentration
on two of the three Ni sublattices.

Again—as in nearly all of our investigations of the elementary diffusion jump—we have
found a jump into a nearest-neighbour site. This might appear tedious, but—to turn the
tables—it reconfirms that for jumps on lattices it is obviously energetically considerably
cheaper to perform a short jump, i.e. a NN jump, than a jump to a more distant neighbour,
even if that latter jump is only a few per cent longer. In other words: the energy barrier to
overcome the saddle point is considerably higher if the jump length is only a few per cent
larger. Even in the present case, which represents to the best of our knowledge the fastest
self-diffusion of metal atoms in purely metallic systems ever measured, the elementary
diffusion jump is not a jump over a great distance (which would appear possible because
of the extremely high vacancy concentration); it is instead again a jump just into a vacancy
on a NN site.
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